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Abstract

There are 10 valid species of Cryptosporidium and perhaps other cryptic species hidden under the umbrella of Cryptosporidium parvum.

The oocyst stage is of primary importance for the dispersal, survival, and infectivity of the parasite and is of major importance for detection

and identi®cation. Because most oocysts measure 4±6 mm, appear nearly spherical, and have obscure internal structures, there are few or no

morphometric features to differentiate species and in vitro cultivation does not provide differential data as for bacteria. Consequently, we rely

on a combination of data from three tools: morphometrics, molecular techniques, and host speci®city. Of 152 species of mammals reported to

be infected with C. parvum or an indistinguishable organism, very few oocysts have ever been examined using more than one of these tools.

This paper reviews the valid species of Cryptosporidium, their hosts and morphometrics; the reported hosts for the human pathogen, C.

parvum; the mechanisms of transmission; the drinking water, recreational water, and food-borne outbreaks resulting from infection with C.

parvum; and the microscopic, immunological, and molecular methods used to detect and identify species and genotypes. q 2000 Published

by Elsevier Science Ltd. on behalf of the Australian Society for Parasitology Inc.
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1. Introduction

The genus Cryptosporidium is classi®ed as a eukaryote in

the phylum Apicomplexa. All species of Cryptosporidium

are obligate, intracellular, protozoan parasites that undergo

endogenous development culminating in the production of

an encysted stage discharged in the faeces of the host. For

the majority of species in the phylum the oocyst stage is of

primary importance for the dispersal, survival, and infectiv-

ity of the parasite. It is also the stage of major importance for

detection and identi®cation of the parasite. For genera like

Caryospora, Cyclospora, Eimeria, Isospora, Sarcocystis

and Toxoplasma biological characteristics (including host

speci®city) combined with the unique size and shape of

the oocyst and its internal structure consisting of sporocysts

and sporozoites often enable specialists to identify most

species. Oocysts of most of these species range from 10 to

40 mm. Differences in shape or internal structure can be seen

with the aid of a high resolution microscope. Although

morphometrics are often a good tool, the dif®culty in

species identi®cation comes when the size, shape or internal

structures of oocysts of one species cannot be distinguished

from those of another. Such is the case with the relatively

small oocysts of Cryptosporidium species.

The ®rst dif®culty in proper identi®cation of Cryptospor-

idium spp. is to distinguish oocysts from other small parti-

cles in faecal and environmental specimens such as yeasts,

moulds, algae, and plant debris. Then, because most oocysts

measure 4±6 mm, appear nearly spherical, and have obscure

internal structures, there are few or no morphometric differ-

ences on which to differentiate species (Table 1). Although

the wall of the oocyst contains antigens that may stimulate

an antibody response in immunised animals and such anti-

bodies can be labelled to aid identi®cation of oocysts, many

oocyst wall antigens are conserved within the genus Cryp-

tosporidium and appear in several species. Consequently,

there are no antibodies to reliably differentiate species.

Comparison of enzymes and nucleic acids from sporozoites

within oocysts have provided other tools to identify species

and subspecies of Cryptosporidium (Table 2). However,

classifying organisms based on subtle molecular differences
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has not been without complications. Is the difference in an

enzyme structure or in one or a few base pairs in a single

gene containing over a 1000 base pairs suf®cient to differ-

entiate species? Classical biological characteristics such as

host speci®city, used to aid in identifying other species of

Apicomplexa, has been helpful in the genus Cryptospori-

dium but such determinations are expensive and time

consuming. Furthermore, they require both a signi®cant

quantity of oocysts and a variety of potentially susceptible

host species with appropriate facilities to maintain them,

and both must be available at the same time. The present

dilemma associated with detecting, identifying and naming

species of Cryptosporidium is that we must rely on a combi-

nation of data from all three tools: morphometrics, molecu-

lar techniques, and host speci®city. Of the 152 species of

mammals reported to be infected with Cryptosporidium

parvum or a C. parvum-like organism very few oocysts

have ever been examined using more than one of these

tools (Table 3). Until we can clearly identify and con®rm

species or subspecies, the epidemiology and host range of an

isolate will remain presumptive, imprecise, or inaccurate.

Within the aforementioned limits, the goal of this paper is to

identify species of Cryptosporidium, including genotypes of

C. parvum, and review the hosts, outbreaks affecting

humans, patterns of transmission, and methods of identi®-

cation of C. parvum.

2. Distribution and prevalence of infections in humans

Human infection with Cryptosporidium, ®rst reported in

two cases in 1976 and a further 11 cases over the next 6 years

has now been reported from over 90 countries on six conti-

nents [1]. Most data come from outbreaks or individual cases

reported in scienti®c or medical journals. Except for

outbreaks, most specimens in developed countries were

submitted to diagnostic laboratories from persons with

gastrointestinal illness. Estimates from United States public

health records suggest that ,2% of all stools tested by health

care providers are positive for Cryptosporidium [2]. Estimat-

ing ,15 million annual visits for diarrhoea, infection with

Cryptosporidium might be expected in 300 000 persons

annually; a ®gure 45 times higher than estimates based on

FoodNet surveillance [2]. Indeed, CDC surveillance summa-

ries for water-borne and food-borne disease outbreaks

reported only one outbreak of cryptosporidiosis over 5 and

3 years, respectively [3,4]. The authors state that data in their

reports should be interpreted with caution because the

number of cases reported represent only a fraction of the

total that occur. Surveys in developing countries ®nd a higher

prevalence of infection than in industrialised countries [1].

Better sanitation and cleaner drinking water in the more

industrialised countries probably account most for this differ-

ence. Within these large populations are speci®c groups at

greater risk of infection including children, malnourished
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Table 1

Valid named species of Cryptosporidium

Species name Type host Primary locationa Size of viable oocysts (mm)

C. andersoni Bos taurus (cattle) A 7.4 £ 5.5 (6.0±8.1 £ 5.0±6.5)

C. baileyi Gallus gallus (chicken) BF, CL 6.2 £ 4.6 (5.6±6.3 £ 4.5±4.8)

C. felis Felis catis (cat) SI 4.6 £ 4.0 (3.2±5.1 £ 3.0±4.0)

C. meleagridis Meleagris gallopavo (turkey) SI 5.2 £ 4.6 (4.5±6.0 £ 4.2±5.3)

C. muris Mus musculus (mouse) ST 8.4 £ 6.3 (7.5±9.8 £ 5.5±7.0)

C. nasorum Naso lituratus (®sh) ST, SI 4.3 £ 3.3 (3.5±4.6 £ 2.5±4.0)

C. parvum Mus musculus (mouse) SI 5.0 £ 4.5 (4.5±5.4 £ 4.2±5.0)

C. saurophilum Eumeces schneideri (skink) ST, SI 5.0 £ 4.7 (4.4±5.6 £ 4.2±5.2)

C. serpentis Many species of reptiles ST 6.2 £ 5.3 (5.6±6.6 £ 4.8±5.6)

C. wrairi Cavia porcellus (guinea-pig) SI 5.4 £ 4.6 (4.8±5.6 £ 4.0±5.0)

a A, abomasum; BF, bursa of Fabricius; CL, cloaca; ST, stomach; SI, small intestine. Based on electron microscopy.

Table 2

Genotypes/cryptic species of C. parvum

Genotype Loci examined Immunocompetent host range

Cattle 18S rRNA, AcetylCoA, b-tubulin, COWP, Cp15, Cp 11, dhfr, hsp70, ITS1, 5.8S, ITS2 rRNA,

poly(T), RNR, TRAPC1, TRAPC2, microsatellite loci

Artiodactyls, domestic animals,

human

Human/monkey 18S rRNA, AcetylCoA, b-tubulin, COWP, Cp15, Cp 11, dhfr, hsp70, ITS1, 5.8S, ITS2 rRNA,

poly(T), RNR, TRAPC1, TRAPC2, microsatellite loci

Human, dugong

Mouse 18S rRNA, AcetylCoA, COWP, dhfr, hsp70, ITS1, 5.8S, ITS2 rRNA/monkey Mouse, large-footed mouse-eared bat

Pig 18S rRNA, COWP, dhfr, hsp70, ITS1, 5.8S, ITS2, rRNA Pig

Marsupial 18S rRNA, dhfr, hsp70, ITS1, 5.8S, ITS2 rRNA Koala, kangaroo

Dog 18S rRNA, hsp70 Dog

Ferret 18S rRNA, hsp70 Ferret
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Table 3

Cryptosporidium parvum (and C. parvum-like) checklist of 152 mammalian

hosts with citations for their ®rst report

Order: Artiodactyla

Addax nasomaculatus (addax) [167]

Aepyceros melampus (impala) [168]

Ammotragus lervia (Barbary sheep) [169]

Antidorcas marsupialis (springbok) [168]

Antilope cervicapra (blackbuck) [167]

Axis axis (axis deer) [168]

Bison bison (American bison) [170]

Bison bonasus(European bison) [171]

Bos indicus (zebu) [172]

Bos taurus (ox) [173]

Boselaphus tragocamelus (nilgai) [168]

Bubalus bubalis (water buffalo) [174]

Bubalus depressicornis (lowland anoa) [170]

Camelus bactrianus(bactrian camel) [175]

Capra falconeri (turkomen markhor) [168]

Capra hircus (goat) [176]

Capreolus capreolus (roe deer) [177]

Cervus albirostris (Thorold's deer) [178]

Cervus duvauceli (Barasingha deer) [168]

Cervus elaphus (red deer/elk/wapiti) [179]

Cervus eldi (Eld's deer) [168]

Cervus nippon (Sika deer) [168]

Cervus unicolor (sambar) [170]

Connochaetes gnou (wildebeest) [180]

Connochaetes taurinus (blue-beard gnu) [181]

Dama dama (fallow deer) [168]

Elaphus davidianus(Pere David's deer) [171]

Gazella dama (Addra gazelle) [168]

Gazella dorcas (Dorca's gazelle) [181]

Gazella leptoceros (slender-horned gazelle) [168]

Gazella subgutterosa (Persian gazelle) [182]

Gazella thomsoni (Thomson's gazelle) [183]

Giraffa camelopardalis (giraffe) [181]

Hexaprotodom liberiensis (pygmy hippopotamus) [170]

Hippotragus niger (sable antelope) [167]

Kobus ellipsiprymmus (ellipsen waterbuck) [181]

Lama glama (llama) [184]

Lama guanicoae (guanaco) [170]

Lama pacos (alpaca) [185]

Muntiacus reevesi (muntjac deer) [186]

Odocoileus hemionus (mule deer) [168]

Odocoileus virginianus (white-tailed deer) [187]

Oryx gazella callotys (fringe-eared oryx) [167]

Oryx gazella dammah (scimitar-horned oryx) [167]

Ovis aries (sheep) [188]

Ovis musimon (mou¯on) [170]

Ovis orientalis (urial) [189]

Sus scrofa (pig) [190]

Syncerus caffer (African buffalo) [181]

Taurotragus oryx (eland) [168]

Tayassu tajacu (collared peccary) [170]

Tragelaphus euryceros (bongo) [170]

Order: Carnivora

Acironyx jubatus (cheetah) [191]

Canis familiaris (dog) [192]

Canis latrans (coyote) [187]

Felis catus (cat) [193]

Helarctos malayanus (Malayan bear) [194]

Martes foina (beech marten) [195]

Meles meles (badger) [186]

Mephitis mephitis (striped skunk) [187]

Table 3 (continued)

Order: Artiodactyla

Mustela putorius (ferret) [196]

Panthera pardus (leopard) [194]

Procyon lotor (raccoon) [197]

Urocyon cinereoargenteus (grey fox) [187]

Ursus americanus (black bear) [187]

Ursus arctos(brown bear) [191]

Ursus (Thalarctos) maritimus(polar bear) [191]

Vulpes vulpes (red fox) [187]

Zalophus californianus (California sea lion) [292]

Order: Chiroptera

Eptesicus fuscus (big brown bat) [198]

Myotis adversus (large-footed mouse-eared bat) [158]

Order: Insectivora

Ateletrix albiventris (African hedgehog) [199]

Erinaceus europaeus (European hedgehog) [171]

Sorex araneus (long-tailed shrew) [200]

Sorex minutus (pygmy shrew) [186]

Order: Lagomorpha

Oryctolagus cuniculus (rabbit) [201]

Sylvilagus ¯oridanus (cottontail) [202]

Order: Marsupialia

Antechinus stuartii (brown antechinus) [203]

Didelphis virginiana (Opossum) [204]

Isodon obesulus (southern brown bandicoot) [161]

Macropus giganteus(eastern grey kangaroo) [171]

Macropus rufogriseus (red neck wallaby) [171]

Macropus rufus (red kangaroo) [161]

Phascolarctos cinereus (koala) [161]

Thylogale billardierii (pademelon) [161]

Trichosurus vulpecula (brushtail possum) [205]

Order: Monotremata

Tacyglossus aculeatus (echidna) [161]

Order: Perissodactyla

Ceratotherium simum (southern white rhinoceros) [181]

Equus caballus (horse) [206]

Equus przewalski (miniature horse) [194]

Equus zebra (zebra) [180]

Rhinoceros unicornis (rhinoceros) [194]

Tapirus terrestris (Brazilian tapir) [170]

Order: Primates

Ateles belzebuth (Marimonda spider monkey) [207]

Calithrix jacchus (common marmoset) [208]

Cercocebus albigena (mangabey) [207]

Cercocebus torquatus(white-collared monkey) [207]

Cercopithecus aethiops (velvet monkey) [207]

Cercopithecus campbelli (Campbell's mona) [207]

Cercopithecus talapoin (Talapoin monkey) [207]

Erythrocebus patas (Patas monkey) [207]

Eulemur macaco (black lemur) [170]

Gorilla gorilla (gorilla) [209]

Homo sapiens (human) [210]

Hylobates syndactylus syndactylus (siamang) [170]

Lemur catta (ring-tailed lemur) [170]

Lemur macacomayottensis (brown lemur) [207]

Lemur variegatus (ruffed lemur) [170]

Macaca fascicularis (long-tailed macaque) [211]

Macaca fuscata (Japanese macaque) [212]

Macaca mulatta (rhesus monkey) [213]



persons, and a range of immunocompromised individuals

including AIDS patients, transplant recipients, patients

receiving chemotherapy for cancer, institutionalised

patients, and patients with immunosuppressive infectious

diseases.

3. Transmission

The oocyst is the stage transmitted from an infected host

to a susceptible host by the faecal-oral route. Routes of

transmission can be (1) person-to-person through direct or

indirect contact, possibly including sexual activities, (2)

animal-to-animal, (3) animal-to-human, (4) water-borne

through drinking water or recreational water, (5) food-

borne, and (6) possibly airborne. To determine how many

oocysts of C. parvum were required for seronegative healthy

persons to become infected, 29 volunteers ingested a single

dose of 30 to 1 million oocysts from a calf [5]. After ingest-

ing 30 oocysts, one of ®ve persons became infected. After

ingesting 1000 or more oocysts seven of seven became

infected. The median infective dose (ID50) was calculated

to be 132 oocysts. With further data the ID50 was recalcu-

lated to be 87 oocysts and different isolates of C. parvum

were found to have highly different ID50 values [6]. The ID50

in human volunteers ranged from 9 to 1042 oocysts for

TAMU and UCP isolates, respectively [6].

3.1. Oocyst survival: Effect of temperature and desiccation

Oocysts of C. parvum can remain viable for many

months. When held at 208C for 6 months many oocysts

were still infectious for suckling mice [7]. Higher tempera-

tures result in more rapid loss of viability. Some oocysts

held at 25 and 308C were infectious only to 3 months.

Warming oocysts from 9 to 558C over 20 min resulted in

loss of infectivity for suckling mice [8]. Oocysts held at

59.78C for 5 min had very low infectivity [9] and others

held at 71.78C for only 5 s were killed [10].

Freezing kills oocysts. Snap freezing and programmed

freezing to 2708C resulted in immediate killing of C.

parvum oocysts even in the presence of a variety of cryo-

protectants [11,12]. At higher temperatures oocysts survive

longer, some oocysts held at 2208C were viable for up to 8

h, but not at 24 h [12]. Some oocysts held at 2108C were

infectious for mice up to 1 week after storage, whereas those

held at 258C remained viable for up to 2 months [7,12].

These ®ndings suggest that ¯uids within oocysts offer mini-

mal cryoprotection to the sporozoites.

Desiccation is lethal to oocysts. Only 3% of oocysts were

found viable after 2 h of desiccation and 100% killing was

reported at 4 h [11,13].

3.2. Mechanisms of transmission

Faeces deposited on the ground is subjected to wind and

water transporting oocysts across or through soil. In some

cases humans and animals contribute to the movement of

oocysts. To initiate infection, oocysts must be ingested with

food, water, or by close personal contact with infected

people, animals or contaminated surfaces.

3.2.1. Mechanical transport across and through soil and

transport hosts

Faecal contamination of soil and surface water can ulti-

mately lead to contamination of fresh foods, drinking water,

and recreational water. Although oocysts can be detected in

soil [14], their movement from faeces on land surfaces to

surface and ground water has received little attention. A
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Table 3 (continued)

Order: Artiodactyla

Macaca nemestrina (cotton-tipped/pigtail macaque) [214]

Macaca radiata (Bonnet macaque) [211]

Macaca thibetana (Pere David's macaque) [170]

Mandrillus leucophaeus (drill) [170]

Nycticebus pygmaeus (lesser slow loris) [207]

Papio anubis (olive baboon) [215]

Papio cynocephalus (baboon) [212]

Pithecia pithecia (white-faced saki) [170]

Pongo pygmaeus (orangutan) [194]

Saguinus oedipus (cotton-topped tamarin) [168]

Saimiri sciureus (squirrel monkey) [216]

Varecia variegata (red-ruffed lemur) [168]

Order: Proboscidea

Elephas maximus (Indian elephant) [178]

Loxodonta africana (African elephant) [170]

Order: Rodentia

Apodemus agrarius (®eld mouse) [217]

Apodemus ¯avicollis (®eld mouse) [218]

Apodemus sylvaticus (®eld mouse) [219]

Castor canadensis (beaver) [220]

Castor ®ber (European beaver) [217]

Cavia porcellus (guinea-pig) [221]

Chinchilla laniger (chinchilla) [222]

Clethrionomys glareolus (red-backed vole) [218]

Geomys bursarius (pocket gopher) [187]

Glaucomys volans (¯ying squirrel) [187]

Hystrix indica (Indian porcupine) [171]

Marmota monax (woodchuck) [187]

Mesocricetus auratus (golden hamster) [223]

Microtus agrestis (®eld vole) [224]

Microtus arvalis (Orkney vole) [225]

Mus musculus (house mouse) [201]

Myocastor coypus (coypu) [226]

Ondatra zibethicus (muskrat) [187]

Rattus norvegicus (Norwegian rat) [227]

Rattus rattus (house rat) [228]

Sciurus carolinensis (grey squirrel) [229]

Sciurus niger (fox squirrel) [187]

Sigmodon hispidus (cotton rat) [230]

Spermophilus tridecemlineatus (13-lined ground

squirrel)

[187]

Tamias sibiricus (Siberian chipmunk) [293]

Tamias striatus (chipmunk) [187]

Order: Sirenia

Dugong dugon (dugong) [231]



greenhouse soil tilting table was used to detect movement of

C. parvum oocysts in a variety of soil types [15,16]. Oocysts

in livestock faeces were applied to soil blocks which were

then intermittently irrigated. Oocysts moved within the soil

for several weeks, and in some cases for over 70 days. Most

oocysts were found within the upper 2 cm of soil, the

numbers decreasing with increasing depth. Some were

recovered at 30 cm but none were recovered at 70 cm.

When oocysts of Cryptosporidium were isolated from

gulls in the United Kingdom it was not known if the oocysts

were C. parvum or an avian species, but the investigators

postulated that oocysts could be distributed by birds over

wide areas [17]. Subsequently, it was shown that C. parvum

oocysts ingested by Canada geese (Branta canadensis) and

Peking ducks (Anas platyrhynchos) passed through the

gastrointestinal tract, were excreted in the faeces for nearly

1 week, and were capable of infecting mice [18,19]. Later,

viable oocysts of C. parvum were recovered from faeces of

Canada geese in ®elds where they rested along their migra-

tion route [20].

What appeared to be oocysts of C. parvum were found in

the intestinal tracts of cockroaches (Periplaneta americana)

collected in the household where a child had cryptospori-

diosis, suggesting that roaches had a role in disseminating

the parasite [21]. House ¯ies, exposed under laboratory

conditions to bovine faeces containing oocysts of C. parvum

and wild ®lth ¯ies trapped in a barn where a calf had cryp-

tosporidiosis, had oocysts both in their faeces and on their

external surfaces [22,23]. Although most oocysts of C.

parvum ingested by dung beetles were destroyed by diges-

tion, some passed through the intestinal tract and appeared

morphologically normal in beetle faeces [24]. Oocysts also

were recovered from the external surfaces of beetles,

suggesting they may be capable of disseminating oocysts

in the environment. Six genera of rotifers (microscopic

invertebrates found worldwide in lakes, ponds, puddles,

moss, damp soil, or virtually anywhere water can accumu-

late) were observed ingesting oocysts of C. parvum; it was

not determined whether oocysts were digested or rendered

nonviable [25].

3.2.2. Transmission via drinking water

Positive ®ndings of oocysts in untreated wastewater,

®ltered secondarily treated wastewater, activated sludge

ef̄ uent, combined sewer over¯ows, groundwater, surface

water, and treated drinking water indicate widespread faecal

contamination [26,27]. Numerous reports worldwide

provide strong circumstantial evidence that contaminated

water is a high risk factor for cryptosporidiosis [28].

Contamination of surface source waters in North America

has been reported from many studies. Representative of

these are the studies [29,30] in which the same sites were

revisited after a 4-year interval and it was found that 89 and

45%, respectively, of all samples were positive for oocysts

of C. parvum. In drinking water treatment plants using

conventional ®ltration, a summary of studies indicated

that oocysts were found in ®nished water 3.8±33.3% of

the time at concentrations from 0.1 to 48 oocysts per 100 l

[27]. These levels represent daily exposure to persons using

®lter puri®ed tap water in the USA. In the USA in 1988

surface water was used by over 155 million people in

6000 community water systems of which 23% provided

un®ltered water to 21 million people and protection from

infectious agents relied solely on disinfection [31]. Unless

source water is protected, higher exposure levels might be

expected at households served by systems providing un®l-

tered water. What is not well documented about Cryptos-

poridium is the viability, species, and source of the oocysts

found in tap water. Because identi®cation of species of

oocysts in water is not routine, the public health signi®cance

of oocysts found in water is unclear. Although water-borne

infections in individuals are dif®cult to document, outbreaks

of cryptosporidiosis linked to drinking water (Table 4)

clearly con®rm that viable C. parvum oocysts enter and

pass through drinking water puri®cation processes. Nonvi-

able oocysts of C. parvum and other species also may be

present in source water and ®nished water.

The ®rst reported water-borne outbreak of cryptospori-

diosis, con®rmed by stools and serologic tests, was in the

summer of 1984 in Braun Station, a suburb of ,5900

persons 32 km from San Antonio, Texas [32]. Diarrhoea

was the major symptom. A telephone survey of 100

homes identi®ed an attack rate of 34%. Potable, un®ltered

artesian well water supplied to all 1791 homes was contami-

nated with faecal coliforms. Dye introduced into the

community sewage system appeared in the well water.

In 1987 an outbreak, ®rst recognised as a dramatic

increase in gastroenteritis among college students, affected

,13 000 of 64 900 residents in Carroll County, GA, USA

[33]. Oocysts were identi®ed in treated water from the water

treatment plant, dead water mains, and streams above the

plant. Dye added to a sewage over¯ow caused by a blocked

sewer line above the treatment plant reached the plant

within 6 h. Within the plant, failures included removal of

mechanical agitators from the ¯occulation basins, impaired

®ltration, and use of ®lters that were not being back washed.

In 1993 ,403 000 out of ,1 610 000 people in the

greater Milwaukee, WI area experienced the largest docu-

mented water-borne disease outbreak in US history [34]. An

epidemiologic investigation began after the health depart-

ment was noti®ed of gastrointestinal illness causing high

absenteeism of hospital employees, students, and teachers.

Within 4 days, oocysts were identi®ed in residents' stools,

treated water from one of the two water treatment plants was

found highly turbid, a boil water advisory was issued, and

that plant was closed. Oocysts were identi®ed in ice made

before and during the outbreak. Oocysts from Lake Michi-

gan water apparently entered the southern treatment plant.

Possibly, inadequate amounts of polyaluminium chloride or

alum coagulant failed to reduce the high turbidity, and recy-

cling of ®lter backwash water may have increased the

number of oocysts in the ®nished water. Heavy rains, cattle
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manure on ®elds in the watershed, abattoir waste, and

sewage over¯ow were considered potential sources.

However, after oocysts from four affected persons failed

to infect animals and were identi®ed genetically to be of

human origin, the probable source was sewage over¯ow

[35].

Cattle (and sheep) are repeatedly implicated as sources of

water-borne outbreaks outside the United States but have

not been conclusively identi®ed (by genotyping) as the

source of any water-borne outbreak within the United States

[35]. The outbreak in Cranbrook, BC is the only water-borne

outbreak in North America in which oocysts of the bovine

genotype have been identi®ed [35].

Many other water-borne outbreaks have been documen-

ted with patterns similar to those above (Table 4). Most

epidemiologic investigations have detected a combination

of causes including contaminated source water, high turbid-

ity, and failures at the treatment plant.

3.2.3. Food-borne transmission

Reports of food related outbreaks are few, dif®cult to

document, and greatly under-reported (Table 4). Individual

cases and small group outbreaks are less likely to be recog-

nised.

Oocysts of Cryptosporidium were found in sea water near

a sewage outfall site in Honolulu, Hawaii [26] and in estuar-

ine waters in the Chesapeake Bay [36]. Molluscan shell®sh

®lter large quantities of water, extract tiny particles that

remain on their gills and thereby make excellent biological

indicators of water-borne pathogens. Oocysts of C. parvum

have been detected in oysters, clams, and mussels collected

from the Chesapeake Bay [37,38], in mussels from the coast

of Ireland [39], and in oysters from Galicia, Spain [40].

Although none of these ®ndings were associated with

outbreaks of cryptosporidiosis, repeated outbreaks of viral

and bacterial illness associated with ingestion of raw shell-

®sh should serve as a warning that cooking of shell®sh will

reduce the risk of illness from all these pathogens.

Oocysts have been found on the surface of raw vegetables

from the market place. Cool, moist vegetables provide an

optimal environment for survival. In Costa Rica oocysts

were found on cilantro leaves and roots, lettuce, radishes,

tomatoes, cucumbers, and carrots but not cabbage [41]. In a

suburban slum of Lima, Peru, basil, cabbage, celery, cilan-

tro, green onions, ground green chilli, leeks, lettuce, parsley,

and yerba buena from several markets were contaminated

with oocysts of C. parvum [42]. Vegetables can be contami-

nated from fertiliser of animal or human faeces; by contami-

nated water used to irrigate or moisten produce; by soiled

hands of farm workers, produce handlers, or food workers;

and from contaminated surfaces where vegetables are

packed, stored, sold or prepared. Detecting oocysts washed

from foods is dif®cult. Although only 1% of oocysts experi-

mentally added to fruit and vegetables were recovered [43]

molecular methods to detect and identify small numbers of

oocysts are becoming more important with increasing inter-

national trade in fresh produce.

A cryptosporidiosis outbreak involving 50 school chil-

dren was associated with milk from a local, small-scale

producer in the United Kingdom using an on-farm pasteuri-

ser [44]. Environmental health of®cers responding to a

complaint of dirt in the milk found the pasteuriser was not

working properly at the time of the outbreak. Outbreaks

were associated with drinking fresh-pressed apple juice

(non-alcoholic cider). In Maine, USA, apples from the

ground near a cattle pasture were used for cider at an agri-

cultural fair; 160 attendees developed cryptosporidiosis

[45]. Oocysts from the attendees had genotype characteris-

tics implicating a bovine source [35]. In New York, apples

for cider may have been washed with well water contami-

nated with faeces. In both outbreaks cider was not

pasteurised.

In Minnesota, chicken salad was associated with an

outbreak among 50 people attending a social event [46].

The caterer changed a baby's diaper in her home day-care

facility and later prepared chicken salad for that social

event. In Spokane, Washington, 54 of 62 persons who

attended a catered banquet became ill 3±9 days later [47].

The buffet of 18 foods and beverages contained seven

uncooked produce items. Food eaten by 51 affected persons

contained uncooked green onions. Between 3±4 weeks after

the banquet 2 of 14 food preparers were positive for Cryp-

tosporidium; one was symptomatic at the time of the

banquet. Similarly, 88 students and four cafeteria employ-

ees were diagnosed with cryptosporidiosis at a university in

Washington, DC [48]. A prep cook who cut up vegetables

and fruit to be eaten raw was ill for 10 days beginning ,3

days before the implicated meal and may have acquired

infection from a child with diarrhoea in his family. Restric-

tion fragment length polymorphism (RFLP) analysis of

polymerase chain reaction (PCR) products and DNA

sequencing showed that all positive specimens were the

human genotype, all were identical, and were linked to the

food handler.

These outbreaks highlight important issues. Food hand-

lers should thoroughly wash their hands before handling

food items and utensils. Raw fruits and vegetables as well

as previously cooked items should not be handled with bare

hands. Uncooked produce should be thoroughly washed

before being placed on kitchen surfaces. Food preparation

surfaces should be washed between preparations. Food

workers should not work when experiencing gastrointestinal

illness.

3.2.4. Transmission via recreational water

Swimming is a very popular recreational activity world-

wide. There are over 350 million person-events annually in

the United States alone [49]. In the past 12 years reported

outbreaks of cryptosporidiosis related to recreational waters

affected over 10 000 people (Table 5). Frequent faecal

contamination coupled with oocyst resistance to chlorine
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[50], low infectious dose, and high bather densities have

facilitated transmission. Even optimal conditions of pool

design, water quality, ®ltration, and disinfection cannot

prevent faecal accidents. However, routine use of recrea-

tional waters by incontinent persons, including diapered

children and toddlers, increases the potential for water-
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Table 4

Outbreaks related to food and drinking water

Year Locality Estimated no.

of cases

Suspected cause Key references

1984 Braun Station, TX 2006 Sewage contaminated artesian well [32]

1986 Great Yarmouth, UK 36 Unknown [232]

1987 Carrollton, GA 12960 Treatment de®ciencies of river water [33]

1988 Ayrshire, UK 27 Treatment de®ciencies of spring water [233]

1989 Swindon/Oxfordshire, UK 516 Treatment de®ciencies of river water [234]

1990 Loch Lomond, UK 442 Treatment de®ciencies of loch water [235]

1990±91 Isle of Thanet, UK 47 Treatment de®ciencies of river water [236]

1991 South London, UK 44 Treatment de®ciencies of tap water [237]

1991 Berks County, PA 551 Treatment de®ciencies of well water [238]

1992 South Devon, UK ? Contaminated drinking water [239]

1992 North-west UK 42 Contaminated drinking water [240]

1992 North-west UK 63 Contaminated drinking water [240]

1992 South-west UK 108 Contaminated drinking water [240]

1992 Jackson County, OR 15000 Treatment de®ciencies of spring/river [238,241,242]

1992 Yorkshire, UK 125 Contaminated tap water [240]

1992 Mersey, UK 47 Contaminated tap water [240]

1992 Bradford, UK 125 Contaminated tap water [243]

1992±93 Warrington, UK 47 Contaminated tap water [244]

1993 Milwaukee, WI 403000 Treatment de®ciencies of lake water [34,35,245±254]

1993 Waterloo, Canada . 1000 Contaminated tap water [27]

1993 Las Vegas, NV 103 Unknown; perhaps tap water [255]

1993 Wessex, UK 40 Contaminated tap water [240]

1993 Northern UK 5 Contaminated water at university [240]

1993 Yorkshire, UK 97 Contaminated tap water [240]

1993 Wessex, UK 27 Contaminated tap water [240]

1993 Central Maine . 150 Contaminated apple cider [45]

1994 Kanagawa, Japan 461 Contaminated drinking water [256]

1994 Walla Walla, WA 104 Sewage contaminated well [257]

1994 SW Thames, Wessex,

Oxford, UK

224 Contaminated tap water [240]

1994 Trent, UK 33 Contaminated tap water (?) [240]

1995 Gainesville, FL 77 Contaminated tap water at day camp [258,259]

1995 Torbay, Devon, UK 575 Non ¯occulated river water [156,239,260]

1995 Northern Italy 294 Community water tanks [261,262]

1995 South-west UK 575 Contaminated tap water [240]

1995 Ireland 13 Playing in sand during farm visit [263,264]

1995 Minnesota 50 Contaminated chicken salad [44]

1996 Eagle Harbor, FL 16 Unknown [265,266]

1996 Kelowna, BC , 14500 Un®ltered water from lake [267±269]

1996 Cranbrook, BC , 2097 Un®ltered water from reservoir [270]

1996 Ogose, Japan . 9000 Un®ltered spring and ground water [271,272]

1996 Northern England, UK , 126 Contaminated drinking water [273]

1996 Yorkshire, UK 20 Contaminated drinking water [273]

1996 North-western England, UK ? Contaminated drinking water [273]

1996 New York . 30 Contaminated apple cider [274±276]

1996 Collingwood, Ontario , 182 Un®ltered municipal water [277]

1997 Shoal Lake, Ontario , 100 Un®ltered lake water [278]

1997 North Thames, UK 345 Filtered borehole water [135,279±281]

1997 England and Wales, UK . 4321 Multiple outbreaks and causes [282,283]

1998 Chilliwack, BC 25±30 Unknown [284]

1998 Brushy Creek, TX 32 Sewage contamination of creek/wells [285]

1998 Spokane, WA , 54 Unknown banquet food [286,287]

1999 Hawke's Bay, New Zealand 20 Unknown [288]

1999 North Island, New Zealand Unknown [289]

1999 North-west England, UK , 360 Un®ltered surface water [290,291]



borne transmission. Recognition of cryptosporidiosis as a

major cause of recreational water-borne disease necessitates

public health of®cials, pool operators, and users to collabo-

rate in developing plans to reduce the risk of water-borne

transmission. Plans should include engineering changes

such as improved ®ltration and turnover rates, separation

of plumbing/ ®ltration for high risk `kiddie' pools. Pool

policies should: establish speci®c response actions to faecal

accidents, test effectiveness of barrier garments such as

swim diapers, and educate both patrons and staff. Education

should stress water-borne disease transmission and suggest

simple prevention measures such as refraining from water

related recreational activities during a current or recent diar-

rhoeal episode, refraining from swallowing recreational

water, using good diaper changing and hand washing prac-

tices, frequent bathroom breaks for young children, and

promoting showers to remove faecal residue before pool

use.

3.2.5. Sexual transmission

A series of reports convincingly suggested but were

unable to con®rm cryptosporidiosis acquired by sexual

transmission. Data comparing HIV/AIDS patients, homo-

sexual men and intravenous drug users, showed a higher

prevalence of cryptosporidiosis in homosexual men [51].

However, the possibility of transmission related to other

behaviours could not be ruled out.

3.2.6. Airborne transmission

Although there have been no proven cases of airborne

transmission in humans the concept was theorised by inves-

tigators in 1987 [52]. There are, however, numerous reports

of high rates of cough or other pulmonary symptoms in

children and immune compromised persons with cryptos-

poridiosis [51]. Although lethal respiratory cryptosporidio-

sis has been reported for persons with AIDS, malignant

lymphoma, and bone marrow transplantation, the occur-

rence of respiratory cryptosporidiosis rarely reported. A

summary of the anatomical distribution of Cryptosporidium

in naturally infected birds [53] suggests that chickens,

turkeys, quail, ducks, pheasant, peafowl and budgerigars

apparently acquire respiratory infections with species of
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Table 5

Outbreaks of cryptosporidiosis related to use of recreational water facilities modi®ed from Ref. [31]

Recreational facility Location Disinfectant No. of cases

(estimated/con®rmed)

Date (year)

Lake Albuquerque, NM None 56/b 1986

Pool Doncaster, UK Chlorine b/79 1988

Pool Los Angeles county Chlorine 44/5 1988

Pool British Columbia, Canada Chlorine 66/23 1990

Pool Gloucestershire, UK Ozone/chlorine b/13 1992

Water slide Idaho Chlorine 500/b 1992

Pool (wave) Oregon Chlorine b/52 1992

Pool (motel) Wisconsin Chlorine 51/22 1993

Pool (motel) Wisconsin Chlorine 64b 1993

Pool Wisconsin Chlorine 5b 1993

Pool Wisconsin Chlorine 54b 1993

Pool (motel) Missouri Chlorine 101/26 1994

Lake New Jersey None 2070/46 1994

Pool Sutherland, Australia Chlorine b/70 1994

Pool Kansas a 101/2 1995

Water park Georgia Chlorine 2470/6 1995

Water park Nebraska a b/14 1995

Pool Florida a 22/16 1996

Water park California Chlorine 3000/29 1996

Pool Andover, UK Chlorine 8/b 1996

Lake Indiana None 3/b 1996

River North-west England and

Wales, UK

None 27/7 1997

Pool South-west England and

Wales, UK

Ozone and chlorine b/9 1997

Fountain Minnesota Sand ®lter 369/73 1997

3 Pools Canberra, Australia a b/210 1998

Pool Oregon a 51/8 1998

Pools Queensland, Australia a 129/b 1997

Pools New South Wales, Australia a 370/b 1998

Pools Hutt Valley, New Zealand a b/171 1998

a No data available.
b Reference did not identify cases as estimated or con®rmed.



avian Cryptosporidium more frequently than mammals

acquire such infections.

4. Detection and identi®cation

4.1. Detection methods

4.1.1. Microscopic staining methods

Conventional detection methods include concentration

and staining of faecal smears [54±69]. Differential staining

methods including safranin-methylene blue stain [70],

Kinyoun [71], Ziehl-Neelsen [55] and DMSO-carbol fuch-

sin [60] stain oocysts red and counterstain the background.

Differential staining, however, is time consuming and varies

in sensitivity and speci®city [67,70,72]. Fluorochrome

stains [73,74], although sensitive, are complex and oocyst-

like structures in faecal debris often take up the stain. Nega-

tive staining techniques with nigrosin [59], light green,

merbromide [66] and malachite green [75] stain background

yeasts and bacteria but not oocysts. Many of these stains

require an experienced microscopist, however, and are

labour-intensive.

4.1.2. Immunological-based detection methods

Immunological-based techniques including polyclonal

¯uorescent antibody tests [76], latex agglutination reactions

[77] immuno¯uorescence (IF) with monoclonal antibodies

(mAbs) [78±83], enzyme-linked immunosorbent assays

(ELISA) [84±90], reverse passive haemagglutination

(RPH) [91] immunoserology using IF detection [92] and

ELISA [28,93,94], and solid-phase qualitative immuno-

chromatographic assays [95] have been developed for the

detection of cryptosporidiosis. Non-speci®city of antibody-

based methods due to cross-reactivity with other microor-

ganisms can be problematic. For example, in the study of

gill washings and haemolymph from oysters that harboured

oocysts of Cryptosporidium [37] a variety of organisms and

particulate material of many sizes and shapes were observed

that ¯uoresced as brightly as the oocysts.

4.1.3. Concentration techniques for detection of oocysts in

water

Before oocysts can be detected in water they must be

concentrated using methods such as continuous ¯ow centri-

fugation, membrane ®ltration, calcium carbonate ¯occula-

tion, Envirochek (Gelman) cartridge ®lters and

polycarbonate track etch membrane systems (Corning

Costar) [96]. Concentrated oocysts can then be separated

from accompanying debris by density gradient centrifuga-

tion or immunomagnetic bead separation (IMS). Recovery

rates are affected by many factors including turbidity and

other physical-chemical properties of the water, antibody

reactivity with other micro-organisms, removal from ®lters,

and loss during centrifugation [96±99]. Following concen-

tration from water, most conventional detection methods

have relied on microscopy of chemically or immunologi-

cally stained specimens. The dif®culties in these methods

comes from the inability to distinguish C. parvum from

Cryptosporidium species not of public health signi®cance

and to distinguish live from dead oocysts.

4.1.4. Molecular techniques

A variety of PCR tests offer alternatives to conventional

diagnosis of Cryptosporidium for both clinical and environ-

mental specimens [97,100±105]. Although PCR is rapid,

highly sensitive, and accurate, it has several limitations.

False positives can result from detection of naked nucleic

acids, non-viable microorganisms, and laboratory contam-

ination. Some environmental contaminants interfere with

qualitative and/or quantitative assays [106]. For routine

acceptance of PCR as a diagnostic tool, interference must

be overcome, and a standardised, reliable method of reco-

vering oocysts from water supplies must be developed.

4.1.5. Techniques to determine oocyst infectivity and

viability

A reliable indicator of oocyst infectivity is needed to

differentiate potentially infectious from non-infectious

oocysts and for valid disinfection studies [96]. Vital dyes

such as propidium iodide (PI: not membrane permeant) and

4, 6, diamidino-2 0-phenylindole (DAPI, membrane

permeant), as indicators of viability, once reported to corre-

late well with in vitro excystation [107], have been reported

to signi®cantly overestimate oocyst viability [108]. In vitro

excystation is not an accurate measure of viability or infec-

tious potential [109]. Oocysts that failed to excyst in vitro

were found infectious in vivo [109]. Furthermore, sporo-

zoites can excyst from oocysts and appear viable but are

not infectious. Sporozoites depleted of amylopectin (poly-

saccharide required for energy) lacked infectivity in vivo

[110]. Reverse transcriptase (RT)±PCR demonstrated that

the quantity of amyloglucosidase correlated with infectivity

[111]. Other molecular tests for viability include ¯uorescent

in situ hybridisation (FISH) [112] and cell culture followed

by RT±PCR [113,114].

4.2. Identi®cation: molecular epidemiology of

Cryptosporidium parvum

Isolates of C. parvum possess different antigens [115±

118], virulence, infectivity, and drug sensitivity [119±

121]. An important advantage of molecular techniques is

that they allow not only for accurate and sensitive detection

of Cryptosporidium but also provide information on genetic

variability of isolates of Cryptosporidium. Recent molecular

evidence has demonstrated that C. parvum is not a uniform

species, but consists of several distinct genotypes or cryptic

species.
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4.2.1. Cryptosporidium in humans and domestic livestock -

`human' and `cattle' genotypes

Genetic and biological studies indicate at least two geno-

types of Cryptosporidium infecting humans: a human geno-

type found only in humans, and a zoonotic cattle genotype

found in animals such as cattle, sheep, goats etc. as well as

humans [35,42,104,122±149]. The latter is infectious for

other animals such as laboratory rodents also [35,151].

Genetic diversity in human and animal isolates of C.

parvum was clearly identi®ed by isoenzyme analysis;

zoonotically transmitted isolates from humans exhibited

animal pro®les [122,123,151]. Differences between these

isolates were con®rmed by random ampli®ed polymorphic

DNA (RAPD) analysis [125,126,152,153]. Because few

oocysts are usually recovered from environmental and

faecal specimens and these contain contaminants, most

genetic studies use parasite-speci®c PCR primers to over-

come these problems. Sequence analysis examines all bases

at a particular locus and is the `gold standard' of genotyping

studies. RFLP analysis examines only those bases at parti-

cular restriction sites within the locus. Sequence analysis

provides the most complete and reliable data but is more

costly and time-consuming whereas RFLP analysis allows a

larger data set to be examined. Both techniques have yielded

valuable information on genetic variation within this genus.

Sequence and/or PCR±RFLP analysis of the 18S rDNA

gene [125,127,128,143±145] and the more variable internal

transcribed rDNA spacers (ITS1 and ITS2) [126,129] the

acetyl-CoA synthetase gene [108] the COWP gene [134],

the dihydrofolate reductase-thymidylate synthase (dhfr-ts)

gene [104,138,141] the 70 kDa hsp70 [139] the thrombos-

pondin-related adhesion protein (TRAP-C1 and TRAP-C2)

genes [35,135±137] and an unidenti®ed genomic fragment

[124] have all con®rmed the genetic distinctness of the

human and cattle genotypes.

A recent multilocus approach analysed 28 isolates of

Cryptosporidium originating from Europe, North and

South America and Australia [136]. PCR±RFLP analysis

of the polythreonine [poly(T)] and COWP gene, TRAP-

C1 gene and ribonucleotide reductase gene (RNR), and

genotype speci®c PCR analysis of the rDNA ITS1 region,

clustered all the isolates into two groups, one comprising

both human and animal isolates and the other comprising

isolates only of human origin [136]. PCR±RFLP analysis of

the poly(T) and COWP gene, RNR and PCR analysis of the

18S rDNA gene was also conducted on C. parvum isolates

from AIDS patients [150]. Five of the patients exhibited the

human genotype and two exhibited the cattle genotype. In

both studies, neither recombinant genotypes nor mixed

infections were detected [150]. Another study reported

that sequence and PCR±RFLP analysis of the b-tubulin

intron revealed polymorphism within the human genotype

and evidence of recombination between the human and

cattle genotypes [142]. Others have analysed the same

region and have not found recombination [138,154,155].

A study that analysed 211 faecal specimens `positive' for

Cryptosporidium by microscopy used PCR±RFLP analysis

of 18S rRNA, COWP, and TRAP-C1 gene fragments and

found 38% human genotype and 62% cattle genotype [147].

The human genotype was found in signi®cantly more

samples with larger numbers of oocysts and the cattle geno-

type in signi®cantly more samples with small numbers of

oocysts, suggesting differences in fecundity between the

two genotypes in humans. The distribution of the genotypes

however, was signi®cantly different in patients with a

history of foreign travel and in those from different regions

in England [147].

In food-borne, water-borne, and day-care centre

outbreaks of cryptosporidiosis, oocysts of both human and

bovine genotypes have been identi®ed, the former identi®ed

more frequently [35,137,139,143,148,156]. Outbreaks

caused by the bovine genotype have been linked to contam-

ination from or direct contact with animals, such as the

Maine apple cider outbreak in 1995, the British Colombia

outbreak in 1996, the Pennsylvania rural family outbreak in

1997 and the Minnesota Zoo outbreak in 1997 [139].

Results of these studies were also very useful in clarifying

the source of contamination in outbreaks, such as the

massive outbreak in Milwaukee in 1993, which was prob-

ably caused by Cryptosporidium of human origin contam-

inating the water supply [35,137].

Despite substantial genetic differences between the

human and cattle genotypes, little variation is found within

these genotypes. Within the human genotype minor differ-

ences have been found in the 18S rRNA [143], TRAP-C2

[35,137] and poly(T) genes [150]. Preliminary analysis of

Cryptosporidium databases has indicated that most micro-

satellite sequences are AT-rich and of low complexity

[149]. Microsatellite analysis of 94 C. parvum human and

animal isolates differentiated the human genotype into two

subgenotypes and the cattle genotype into four subgeno-

types [149]. Some subgenotypes showed a wide geographi-

cal distribution, whereas others were restricted to speci®c

regions. Another study characterised nine microsatellite loci

and identi®ed two subgenotypes within the human genotype

and two subgenotypes within the cattle genotype [157]. A

number of subgenotypes have also been identi®ed within the

human and cattle genotypes using sequence analysis of the

hsp70 locus (Xiao et al., unpublished observations). Addi-

tional loci need to be characterised in order to obtain greater

intragenotype variation.

4.2.2. Additional C. parvum-like genotypes/cryptic species

A number of additional genetically distinct genotypes/

cryptic species have been identi®ed. Recent research,

genetically characterising isolates of C. parvum from mice

(Mus musculus) in Australia, the United Kingdom, Spain

and the United States using sequence analysis of the 18S

rRNA, ITS, dhfr, AcetylCo A and hsp70 loci as well as

RAPD analysis has revealed that these isolates carry a

distinct genotype referred to as the `mouse' genotype

([128,129,132,144,158]; Xiao, et al., unpublished). Interest-
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ingly, some of the mice were also infected with the cattle

genotype indicating that they might serve as reservoirs of

infection for humans and other animals. Oocysts of the

mouse genotype were also identi®ed from a large-footed

mouse-eared bat (Myotus adversus), extending the host

range of this genotype [158]. Pigs have also been shown

to be infected with a genetically distinct host-adapted

form of Cryptosporidium [128,129,132,144,159,160]. Little

is known about the prevalence of Cryptosporidium in

marsupials. Cryptosporidium infections have been reported

in southern brown bandicoots (Isoodon obesulus), a hand-

reared juvenile red kangaroo (Macropus rufus) from South

Australia and a Tasmanian wallaby (Thylogale billardierii)

[161]. Genetic analysis of marsupial isolates at the 18S

rDNA, ITS, dhfr and hsp70 loci have all con®rmed their

genetic identity, and distinctness from other all other geno-

types of C. parvum [132,145].

Genetic analysis of C. parvum-like isolates from dog

(Canis familiaris) isolates from the United States and

Australia and from ferret (Mustela furo) isolates at the

18S rDNA and hsp70 loci have also revealed distinct geno-

types [145,162]. Recently, a monkey genotype has also been

identi®ed based on the analysis of the 18S rRNA, hsp70 and

COWP genes ([145]; Xiao et al., unpublished). As expected,

this genotype is most related to the human genotype. As

more isolates of Cryptosporidium from other animal species

are analysed genetically, it is likely that new additional

genotypes will be identi®ed. The species status of these

genotypes is currently under review [132,133,144] as

there is both biological and genetic evidence to support

their separation into discrete species.

4.2.3. Infectivity of other Cryptosporidium species and

genotypes for humans

Few genotyping studies have been conducted on isolates

of Cryptosporidium from immunocompromised patients

[124,137,150,163,164]. In a study of 10 Cryptosporidium

isolates from HIV-infected individuals at the 18S rDNA

locus, one isolate exhibited the cattle genotype, ®ve isolates

exhibited the human genotype, three were infected with C.

felis and one exhibited the newly identi®ed `dog' genotype

[163]. For some patients, multiple specimens collected over

12 months were available and in these cases the same Cryp-

tosporidium genotype persisted throughout the infection

[163]. In another study of Cryptosporidium isolates from

HIV-infected individuals from Switzerland, Kenya and the

United States in which the 18S rDNA, hsp70 and Acetyl-

CoA synthethase genes were analysed, the majority of

patients (64%) were infected with the human and cattle C.

parvum genotypes [164]. However, several patients were

infected with C. felis (27%) and C. meleagridis (9%)

[164]. These results indicate that immunocompromised

individuals are susceptible to a wide range of Cryptospor-

idium species and genotypes and host-factors must play a

role in controlling susceptibility to these divergent parasites.

Two healthy, asymptomatic 4- and 5-year-old girls in Indo-

nesia passed oocysts resembling those of C. muris for 5 and

6 days [165]. PCR products identi®ed the oocysts as those of

Cryptosporidium but not C. parvum. The recent ®nding of

the C. parvum human genotype in a dugong (Dugong

dugon) [166], complicates our understanding of the epide-

miology and transmission dynamics of this ubiquitous para-

site. Future studies on a larger number of isolates with more

extensive clinical information is required in order to under-

stand the transmission dynamics and full public health

signi®cance of Cryptosporidium species and genotypes in

both immunocompetent and immunocompromised hosts.

5. Conclusion

Cryptosporidiosis is a worldwide disease in humans. Of

10 valid species of Cryptosporidium only C. parvum is

widespread in humans and other mammals. Faecal±oral

transmission of the oocyst stage has resulted in outbreaks

through contamination of drinking water, food, and recrea-

tional water. Detection and identi®cation of oocysts, includ-

ing microscopy, immunological and molecular methods are

constantly improving. We now recognise human and bovine

genotypes of C. parvum, identi®ed by isoenzyme analysis

and con®rmed by RAPD, RFLP, and sequence analysis,

both of which are infectious for immunocompetent persons.

Despite substantial genetic differences between these geno-

types, little variation has been found within each genotype.

Because few reports of C. parvum in mammals have been

characterised by methods other than microscopy there may

be other species hidden under the C. parvum umbrella. Of

the few genotyping studies conducted on Cryptosporidium

isolated from immunocompromised persons, most have

been found infected with the human and cattle genotypes,

some with C. felis and C. meleagridis, and a few with the

dog genotype. Furthermore, two healthy persons have

passed oocysts resembling C. muris and the human geno-

type has been found in a dugong (sea mammal). These

®ndings suggest a greater host range for species and geno-

types of Cryptosporidium than has been documented. These

®ndings also indicate the need for further research on mole-

cular characterisation and speciation of this genus so that the

epidemiology can be better understood.
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